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SECTION 1

N INTRODUCTION
i The bounded-wave electromagnetic-pulse (EMP) simulator makes use of
i two parallel finite-width plates as the guiding structure for the simulated

EMP (figure 1). One reason for employing two parallel plates is that they
support a transverse-electromagnetic (TEM) mode. Another reason is that

f over a significant portion of the region between the plates, the TEM-mode
, fields provide a good approximation to the free-space, plane-wave fields.
3 Unfortunately, such a structure can also support higher-order transverse-
i magnetic (TM) and transverse-electric (TE) modes and a continuous spectrum
(refs. 1,2,3, and 4). The TEM mode alone is not sufficient to completely
describe the total simulator field.

The properties of the TEM mode on two parallel plates have been
investigated extensively by the method of conformal mapping (refs. 5,6, and 7),
: whereas the higher-order modes and the continuous spectrum have been inves-

% tigated only in some limiting cases. In reference 2, integral equations

: for the higher-order modes are formulated by using Green's theorem. The
integral equations are analytically solved under the condition that the
separation of the plates is much larger than their width (i.e., narrow

! plates). In reference 3, alternative integral equations for the higher-
order modes are formulated by employing Laplace transforms and the Wienmer-

Hopf technique, and are solved for the plates with small separation-to-width
ratios (i.e., wide plates). The integral equations derived in reference 2
are most useful for numerical treatment when the separation of the plates is

comparable to or larger than their width, whereas those derived in reference 3
are most useful when the separation of the plates is comparable to or smaller
than their width. The plate geometries discussed in this report have
separation-to-width ratios of one, two and three. The integral equations

v derived in reference 2 are thus more appropriate. In this report, numerical
results for the propagation constants and field distributions will be given

. for the TM modes. The TE modes, which are more highly attenuated away from
the launching region (ref. 2), will be discussed in an appendix.

1
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There is not much information available regarding the continuous
spectrum of the two-parallel-plate simulator. In reference 1, an
asymptotic analysis has been given to calculate the contribution of the
continuous spectrum to the total field of two infinitely long parallel
wires, which may be considered as a limiting case of a two-parallel-plate
simulator. In this report, a preliminary asymptotic estimation of the
continuous spectrum contribution to the TM field at a fixed frequency will

be given.

To solve the integral equations derived in reference 2, one first
transforms the integral equations into the Fredholm integral equations of
the second kind by using Carleman's formula for singular integral equations
(ref. 8). The resulting integral equations are transformed further into
matrix equations which can be solved numerically by expanding the unknown
functions in terms of Chebyshev polynomials. From the numerical solutions
of the matrix equations, the propagation constants and field distributions
of the higher-order modes as well as the properties of the continuous

spectrum can be obtained by some straightforward calculationms.

It should be mentioned that although the results in this report are
obtained for the infinitely long plates, they can be directly applied to the

real simulators where the lengths are finite.
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SECTION II

INTEGRAL EQUATION FORMULATION

Two infinitely long, perfectly conducting, parallel plates of finite

width are shown in figure 2. The width of each plate is 2w and the distance
! separating the plates is 2h. A coordinate system is introduced such that
¢ the z-axis coincides with the axis of the structure and the x-y plane is

9 the transverse plane, with the x—-axis parallel to the plates.

The transverse field components gt(x,y,;,s) and gt(x,y,c ,8) in the
Laplace transform domain (i.e., s, ; domain) are related to the longitudinal
field components, Ez(x,y,;,s) and Hz(x,y,c,s), via (ref. 2)

bt i -

DY Edaiaitiny

-2 -2 .
E (x,y,%,8) = - ¢p "V.E (x,y,5,8) ~ sup “zx V.H (x,y,5,8) o

-2 -2 A
Ec(x,y.C,S) = - Zp Vth(x,y,C.s) +sep zx Vth(x,y,c,s)

where the factor exp(Zz + st) has been suppressed, p2=szlc2- 1;.2, c is the

vacuum speed of light and Vt is the gradient in the transverse direction.

From equation 1, it is obvious that the fields can always be decomposed
into two parts, the TM fields with Hz=0 and the TE fields with Ez= 0. Each
part will be discussed separately in the sequel.

1. TM FIELDS

As has been discussed above, a knowledge of Ez is sufficient for the
determination of the TM field distributions. From reference 2, Ez(x,y,c,s)
is given by

w
E,(x,y,5,8) = J G(x,y,x',h;p)£(x',h)dx" + r G(x,y,x',~h;p) £(x',~h)dx'
-t -w

G(x,y,x',y';p) = 21—,, Ko(p f(x-x')z + (y-y')2 ) (2)

-

f(x,th) = 1lim (-3— Ez(x,th+ €,5,8) - —g; Ez(x,ih- €,C.S))

e0 3y
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Figure 2. Two, Finitely Wide and Infinitely Long Parallel Plates.




where Ko is the modified Bessel function of the second kind and f(x,*h)
satisfy the following set of integral equations

w w i
f G(x,h,x',h;p)f(x',h)dx"' + I G(x,h,x',-h;p)f(x',-h)dx' = a(x,h)
-W -w

(3) :

r G(x,~h,x',h;p) f(x',h)dx" + r' G(x,-h,x',-h;p)f(x',-h)dx' =a(x,-h) .
-w -w

for lx] < w, with a(x,th) = - Ei’nc(x,th,;,s) being the incident longitudinal
electric fields at the plates.

v 2. TE FIELDS

The TE field distributions can be derived completely from Hz (x,v,C,8)
*. which is given by the following formula (ref. 2)
: [ 36 ‘ot : ' ;
: suouz(x,}'sc’s) = - gy_' (x,y,x"y';p)g(x',h)dx
-w = ' = h
(4a)
; w -BG ) .
3 - f Tl (x,y,x"y' ;p)g(X',-h)dX'] |
k) -w = y' = -h
where g(x,th) are defined by
: -1 1
¥ (suo) g(x,th) = 1im(Hz(x,ih+e,:;,s) - Hz(x,ih— s,c,s)) (4b)
1 e+0
-5 and satisfy the following set of differential-integral equatioms
¢ d2 2 w
i 3P r G(x,h,x',h;p)g(x’,h)dx' + f G(x,h,x",-h;p)g(x’,~h)dx’
f dx -w -W
= 8(x,h), for |x| <w (5)

d2 2 w W
=3P f G(x,-h,x',h;p)g(x',h)dx" + J G(x,-h,x',-h;p)g(x',~-h)dx’
X -W -w

d

= B(x,-h), for |x| < w

. . o
 —— — ey . oroam wpuriane . g - - bl - 1
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with B(x,th) = p Ex (x,*h,z,s) + caEz (x,*h,z,s)/3x being the source terms.

Although equations 3 and 5 look extremely complicated, they can be
simplified by observing that for most parallel-plate simulators the source
terms on the right-hand sides of equations 3 and 5 satisfy the following

conditions

a(x,h) = - a(x,-h) = a(-x,h) = a-e(x)
(6)
B(x,h) = - B(x,-h) = -B(-x,h) = 87" (x)
Accordingly, one has
£(x,h) = - £(x,-h) = f(-x,h) = £ “(x)

for the TM fields, and

g(x,h) g(x,-h) = - g(-x,h) = g~ (x)

-e

-0 -
for the TE fields. The superseript "-"ina , B , £ ¢

’ g-o is used to
indicate that all these functions a, 8, £, g are antisymmetric with respect

to y, while the superscript "e'" or "o" is used to indicate that the functioms
are either even or odd functions of x. Under the above conditions of equatiom 6,

the two equations of either integral equation set 3 or 5 become identical.

In the following sections, the simplified equations will be used to

investigate the properties of the higher-order modes and the continuous

spectrum of the two-parallel-plate guiding structure.
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SECTION III

MATRIX-EQUATION FORMULATION FOR THE TM FIELDS

In this section, the integral equations given by equation 3 for the TM

fields will be transformed into matrix equations by expanding the unknown

functions in terms of Chebyshev polynomials.

On account of the source condition of equation 6 the coupled integral

e A A A A

equations 3 are reduced to a single integral equation : y

r(\?(x,h,X',h;p) - G(X.h,X',-h;p)) £8kxdx!' = 0%, x| <w (D
-t H

It is easy to see that the kernel of the integral equation 7 has a loga-
rithmic singularity. After separating out the singular term and normalizing

the variables in the following manner .

x=w, x'=w'

(8)
p=vy/w, h=wH
the integral equation 7 becomes
1 -e
f sn(lE-g" )£ (g")dg"
-1 (9 4
1
= 2r f (MCe-£"57) - NCE-g"5)E S (6)dE" - 2ma (8),  for || <1
-1

where j

1 1
M(E-E'5Y) = 5= KO(YIE-E' [ + 3= wn(|E-g'])

N(E-g';y) = Ak (W(E-E')z + 41-12 )

27 o

Here, both M and N are regular functions of £-&'.

10
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To facilitate the numerical solution of the integral equation 9, it

is desirable to transform it into a Fredholm integral equation of the

second kind. To do this, Carleman's formula for integral equations with

logarithmic kernels is used to obtain (ref. 8)

1
£°(8) + [ (keE,e5v) - L(E,E';Y)) £7°(5"dg’ = s7%(o),
-1

where

K(E’E';Y) = M(E" )ll dE"

m/l- g %n 2 ['1 /- g2

b2 }1 wE-gn-g?
E - E"
m’l-&;z -1
2 b ower-etyy)
L(E,E';y) = dg"

wl-g%2m2 <1 A- ~ g2

2 }1 T AL
. {i:;i -1 E~¢&

+ dg"

s‘e(g) - C! LEH) dg"

/- g tn2 ~1/1- g"

2 f CEnh-e? .

/——2 1 g-¢g"

Here, { denotes the principal-value integral and the prime in M', N', a
J

denotes differentiation with respect to the first argument.

lg]

<1 (10)

-t

The integral equation 10 can now be reduced to a set of algebraic

equations suitable for numerical computation. The mathematical properties

11
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of K(£,E";v), L(E,&";Y) and S-e(g) together with the edge conditions and
symmetry properties of f-e(a) suggest the expansion

£ = I €51, (6) an

2 n=0

1-¢

where TZn(E) are Chebyshev polynomials of the first kind. Then, with the aid
of the orthogonality of the Chebyshev polynomials, the integral equation 10

is transformed to the following set of algebraic equations

-e e e -e -e
£ +mZo(Km“- an)fm =S (12)
where
1 K(§,8';v)T, (E)T, (&')
:m - [ f 2n 2m dEtdE
-1 6__5.2
1 L(&,8";Y)T (E)T (E')
R
— -1 1 gl
s . 2 Jl sT®(E)T, (E)dg
n TE 2n
n ‘<
and
(2, n=0
e =
" \1, a#o0
Or, in matrix form
e e -e -e
[snm+Knm-an] [fm]-[sn ] (13)

where Gnm is the Kronecker delta, which is zero when n is not equal tom

and unity when n equals m, and [rnm] is a matrix whose elements are Tom'

12
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Both K:m and L:m are complicated triple integrals. They can be
simplified by first integrating over £ and then by making the change of
variables £"-£" = 2n and E"+E' = 2n', to get

1l
8
71a2 L M(Zn;Y)G:(n)dn n=0

s £ A
]

nm 1
{] lé ' . e
i - L M (2n.v)an(n)dn n21l
. (14)
3
| s [* N(2n;v)CE(n)d n=0
. Tin2 n3Y)G_(n)dn
: L ® L

16 ' .v)F°
f p L N'(2n;y)F  (m)dn 21
3 where
!
. | - ' L
{ ‘ o - 1-[n| T, ('-m) + T, (n'+n) an
m
0 li- 1= -m?)
’ (15)

1-|n| (1- (n' +n)2)Uzn_l(n' +n)'l.'2m(n' -n)

dn'

F:m(n) - [
il Mo em?)i- o -m?)

and Un(n) is the Chebyshev polynomial of the second kind. By using the expli-
cit formulas for the Chebyshev polynomials in the integrals of equation 15,
G:(r\) and F:m(n) are further transformed into sums of complete elliptic
integrals which are more suitable for numerical computation, viz.,

0 k
Em =7 T t&b,0,200% . (n)
= k=0 j=0 " J 3
) e 'f IZ‘ e .e k+§‘l ( 2 ( ) (16)
e (n) = ul ¢ b, (28-1, 2k) - n%b, (22+1, 2k)) x
an k=0 g=1 PR | o5 M .

x nz“z“‘“'lnj(n) -nb (2041, 20D

ALY




where

R a-t _ (a+2-1)1  .28-1
Upy = D (n=-2)1(22-1)! 2
e -k (m+k-1)im ,2k e
R T e T
)
. L1y 4+i-23 kit!
by (k,2) 1_21 (-1) -2 - DI+ L= 2D
1
1, = nax{0,2§ - ¢} 1, = min{k,2j}

and the functions Dj(n) are determined from the following recursion formulas

2
+1 2 2§ +1 2
Dj_._z(n) = 651—_-,_—3- (1+n )Djﬂ(n) —-2}‘_—3 (l-n )Dj(n)

Dy(n) = 2(1+n){r((1-n)/<1+n)) - z(u-n)/(1+n))2 (6%
Dy (n) = 2F((1-n)/(1+n)/(L+n)

Here, F(n) and E(n) are complete elliptic integrals

/2
F(n) = I (1_,1291“24’)-’5“

gy .
SIS

“/2
(

E(n) = 1- nzsin2¢\);’d¢

0
The solution of the matrix equation 13 is simply given by
[f"] - [s +k® -1 ]'l[s"‘] (18)
m nm nm nm n

Insertion of this solution into equations 11, 2 and 1 gives the Laplace
transform domain TM fields.

14




In the next two sections certain important properties of the TM fields
will be discussed by studying the singularities of equation 2 in the
complex ;-plane at & fixed s = juw.

15




SECTION IV 1

PROPAGATION CONSTANTS AND FIELD DISTRIBUTIONS OF DISCRETE TM MODES .

. e -

In the previous sections, the formulas required to calculate the TM
fields of two parallel-plates are obtained. At a given frequency w, the
field distributions are calculated from the inverse Laplace transform
integrals

E(x,y,2,jw) E(x,y,%,Jw)
- e"Zag (19)

2nj
l'_l,(x,yyz’jw) 4 E(x.}’,C:.‘lw)

§ where CC is the path of integration in the complex Z-plane shown in figure 3
and E(x,y,%,jw) and H(x,y,%,jw) are given by equations 1 and 2. An examina-

st e

1 tion of equation 2 shows that in the complex Z~plane, there are branch points
bl = e - e =

at 7 = * jw and poles at ;k,z where det [snm + Khm me] 0. For the
branch cuts shown in figure 3, the contour CC can be deformed to the left

half-plane for field points at z > 0 and sources at z < 0. The contour

integral along C_ 1is thus reduced to the integral along the branch cut B_ 1

4
(the so-called continuous spectrum contribution) plus the residues at the
poles % 1(the so-called modal fields). The reason why two indices are

assigned to 2 will become clear later when numerical results are obtained.
]

Each modal field is required to be outgoing in the transverse direction

and decaying in the +z direction. Thus, in the branch shown in figure 3, the

ey

poles can exist only in the region where -w/c < Im(g) < 0 and Re(g) < O.
It is also observed that Py g have negative real parts, so that the modal
9

¢ s g e it A P R se.

field distributions increase indefinitely in the transverse directiom.
Hence, the branch shown in figure 3 is appropriate only when the field
points are close to the plates. In the remaining part of this section, the

propagation constants and field distributions of the TM modes will be
discussed, while an estimation of the continuous-spectrum contribution will -
be relegated to the next section.

To calculate the propagation constants of the TM modes, one has to
e e
find first pk,l from the equation det [snm + Knm - an] 0. With these

16
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Figure 3. The Branch of p = - j/¢"+w"/c®. In this Branch, Re(p)

for {: Re(g) < 0 and -w/c < Im(g) < O} and {g: Re(g) > 0
and w/c > Im(g) > O}.
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Py g values (the so-called transverse propagation constants), the corresponding
*

longitudinal propagation constants ck , are simply given by
-—j' +w/c (20)

When H = h/w >> 1, i.e., the plates are extremely narrow, there exist

' - e _ 18 |a
possible pk’z s for which IYk,ll ka'lwl << 1 and det 6nm + Knm an 0.

Actually, under the condition |yk 2[ << 1, one can show that the Yk z's
» ’
satisfy
det[6 +k® -8 ]=de:[<s +6_ 6 (R -1L® )]
nm nm nm om no mo' 00 00
=1+ (4n2- ia(Ty, ) - KO(ZYk,lﬂ)) /tn2 =0 (21

where I = 1,781 is the exponent of Euler's constant. Equation 21 is the

same as that obtained in reference 2, where its solutions are also given.

When the width of the plates is comparable to their separation, which
is the case of interest here where H = 1,2,3, one must resort to numerical

e e
methods to solve the equation det [Snm + Knm - an

= 0 for the transverse
propagation constants pk,l' The method selected is first to locate the
approximate positions of the zeros of the determinant from the constant-
magnitude contours in the complex p-plane. Then these approximate positions
are used as the starting points for the Newton-Raphson method, used to
search for more accurate solutions for the transverse propagation constants
Pk,z'
sufficient to obtain resonably accurate transverse propagation constants

It is found that three terms in the expansion 11 for f-e(E) are

of the first several modes for H > 1. For each transverse propagation
constant pk’z, the f;e are then determined within a multiplicative constant
from the homogeneous equation of equation 13. These f;e values can in turn
be used in equations 1, 2 and 1l to calculate the corresponding modal field
distributions.

18
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The transverse propagation constants Py g of the first several TM
)

modeg for H = 1,2,3 calculated by the above described approach with the
aid of a CDC 6600/7600 computer are tabulated in table 1. The )

values as functions of w for the lowest TM modes with k=0,1 and 2=1,2
are plotted in figures 4, 5 and 6. Four curves of po,z, 2 =1,2,3,4 are
also presented in figure 7 for H-values ranging from 50 to about 2. The
numerical results of the modal field distributions for the TMk,l modes
with k=0,1, 2=1,2 are given in figures 8 through 19, The field distribu-
tions are plotted in terms of constant-value contours of the real parts,

imaginary parts and magnitudes of the normalized field components.

From the. field distribution plots of the TM‘k,l modes, especially the
modes with ¢ > k, it is observed that in the working volume of the simulator
(i.e., x/w, y/h < 1) the fields vary almost sinusoidally as functions of x
and y with periods of 2w/k and 2h/% respectively. The indices k,% used in
the mk, . modes thus characterize the field variations in the x,y directions;
and the use of two indices is justified. In this report, results are given
only for k=0 and 1. It is believed that if one goes even farther away from
the imaginary axis, more TMk,z modes can be found for k > 2. However, for
the modes with k > 2, the corresponding longitudinal propagation constants
Ck,!. will have decay constants so large that those modes become less
important.
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Table 1

TRANSVERSE PROPAGATION CONSTANTS OF TM MODES

hiw | k=0 k=1
() Re(py o) | Impg o) | Re(py w) | Im(py ;o)
1 -0.1274 3.2879 -1.5701 1.1930
2 -0.0590 6.3890 -0.9827 4.3512
1
3 -0.0353 9.5060 -0.5034 7.1986
4 -0.0245 12.6321 -0.2935 10.1311
1 -0.1834 1.6686 -1.2325 0.7914
2 -0.1260 3.2448 -1.1963 2.2510
2
3 -0.0778 4.8067 -0.9098 3.9028
4 -0.0575 6.3662 -0.6898 5.4269
1 |- =0.1779 1.0974 -1.0351 0.5888
2 -0.1299 2.1721 -0.9925 1.4961
3
3 ~0.1006 3.2207 -0.9207 2.5827
4 -0.0814 4.2662 -0.7896 3.6733
E: |
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Figure 4. Frequency Variation of Longitudinal Propagation Constants

Ck,z of Higher-Order TM Modes for k=0,1, 2=1,2 when h/w=1.
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Figure 5. Frequency Variation of Longitudinal Propagation Constants

Ck,l of Higher-Order TM Modes for k=0,1, %= 1,2, when

h/w=2.
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of the TM, ; Mode when h/w = 1.
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that |p2/¢;|/|Ex|2+ IEylz = 1 at x=y=0. Broken Lines are

for Negative Values.
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Constant Value Contours for Normalized Field Component
1 Ve e /0)? + (ReoE /0)? = J(Re (%8, /se)? + (Re(p7, fac,)
of the TM, ; Mode when h/w = 1. The Fields are Normalized
2
so that ]pZ/;I,/]Ex]z+lEyl2 =] at x=y=0, j a
-
i

Figure 8d.
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Constant Value Contours for Normalized Field Component
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of the T™™ Mode when h/w = 1. The Fields are Normalized so

that |p2/;i/|Ex|2+ Il':yl2 =1at x=y=0.
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Figure 9e. Constant Value Contours for Normalized Field Component

/i1a?E,/0)? + (nGp2E /)7 = /(n 78 /se )7 + (1m(p7H, /56 )

of the TMO 2 Mode when h/w = 1. The Fields are Normalized so
*
that |p2/C|/|Ex|2+ lEyIZ =1 at x=y=0.
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Figure 10a. Constant Value Contours for Normalized Field Component

Re(Ez/w) of the 'I'Ml Mode when h/w = 1. The Fields are
Normalized so that |p2/5|/|Ex|2+ [Ey|2 =1 at x=y=0.

Broken Lines are for Negative Values.
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‘ Figure 10c. Constant Value Contours for Normalized Field Compoment |E /w|
of the TM Mode when h/w = 1. The Fields are Normalized so

that Ip /C|VE | +|E | =1 at x=y=0.
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Figure 10d. Constant Value Contours for Normalized Field Component

Are(p’E_ /)% + (Re(szy/C))z - /re (szy/seo))z + (Re(p2u /sc )’

of the ml 1 Mode when h/w = 1. The Fields are Normalized so
/YT

) that [pzlcl IEx|2+|Ey|'-lat x=y=0.
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Figure 10e. Constant Value Contours for Normalized Field Component
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/o E /e + (e 1202 = Line®H fse )7 + (1t /e ))?
of the TMl 1 Mode when h/w = 1, The Fields are Normalized so
td
that lpzlcl/]Ex]2+|Ey|2 =1 at x=y=0.

41

SRR Y e, o e P A




e

y/h

x/w

Figure 10f. Constant Value Contours for Normalized Field Component

e 124 1w 12 o 12 L /g 2+ 15 12
%/l /ig 2 + 15,12 = (o2 (e )/ m, 12+ 0|2 of ehe my |

15:' "g‘ :?"-{,—’._u«g Ao

P

s -

Mode when h/w = 1. The Fields are Normalized so that
2 /i 2
lp°/z) |Ex! +]Ey\2—1at x=y=0,

42




7 s LT T T

\ \\ Sea Sea > i
\ ~ St caaa. N ]
\ h Y . ‘-----------::‘.~,~\
|.5 ol \ ] ks R X it -
~ --’_..------:

-
Secame="”

s
b2
Ppepey-gn
‘--
T eevemeal
’ e,
' ’ " " , - o
[ N ’ ’ PR TN
Vo, 0 0 .
) o' " y
breg2) e
U
ey
vt | |
Py v
1 [ ) ' \ \
W ! \ \ \ \
[ \ \ \ \‘
vALO NN
¥ \ \ \\ A \‘s -
i \ \ \\\ Se Sema
7 ‘\ \\“:‘s Steeeaee”
F \\ \‘~‘~\:‘----‘-":" t’ I’
; Seeo==all Tee-
3 0 1 ,  CSeepollioizIziiio--”
o 05 | 1.5 2
£
] X/w
¥
i
Fi

5 e N

Figure 1la. Constant Value Contours for Normalized Field Component Re(Ez/w)
of the ml 2 Mode when h/w = 1, The Fields are Normalized so ;4

*
that |p2/C|¢lEx|2+ |Ey|2 = 1 at x=y=0, Broken Lines are

for Negative Values.

! 43




Figure 1llb.

B eeme=e==="T2IZI2I333%

==
guppagegngg X X331
-3

oo an W
- N, J

-

ittt T TP PRI T 4

A i 1

0 0.5 I 1.5 2

Constant Value Contours for Normalized Field Component

Im(E_/w) of the m1 Mode when h/w = 1. The Fields are
z »2 7 3

Normalized so that |p2/;|¢[Ex[ + IEy] =1 at x=y=0.

Broken Lines are for Negative Values.
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of the ™™ Mode when h/w = 1. The Fields are Normalized so
4
that |p2/C|V|Ex|2+ [Ey]z =1at x=y=0,
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Figure 11d. Constant Value Contours for Normalized Field Component
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of the ml 2 Mode when h/w = 1. The Fields are Normalized so

*
that |p2/;|v/|Ex| + lEy[2 =1 at x=y=0.
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Figure lle. Constant Value Contours for Normalized Field Component

' Mn?e /0)7 + (1aG’e,/e)? = A1nGPu fe )P + 1mo%H, /e )’ |
of the T™ 2 Mode when h/w = 1. The Fields are Normalized so
that Ipz/c|¢[Ex|2+ |Ey|2 =1 at x=y=0,
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Figure 12a. Constant Value Contours for Normalized Field Component
Re(Ez/w) of the TMO 1 Mode when h/w = 2. The Fields are
’
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Figure 12d.

X/ w

Constant Value Contours for Normalized Field Component
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of the ™ 1 Mode when h/w = 2. The Fields are Normalized so

o,
that lpZ/QIViEx|2-+|Ey|Z =latx=y=0. .
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Figure 12e. Constant Value Contours for Normalized Field Component

/(Im(szx/c))Z + (Im(pzli:y/c:))2 = \/(Im(pzl-l},/sec)))2 + (Im(1:'2Hx/se:°))2
1 of the TM0 1 Mode when h/w = 2. The Fields are Normalized so
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Figure 13d.
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Constant Value Contours for Normalized Field Component

fre %8, /502 + (ReoE 10)% = /(Re (78, Jse )P + (Re (%M f5c )7
of the TMO 2 Mode when h/w = 2. The Fields are Normalized so

L]
that |p2/;|v’|Ex|2+ |r~:y|2 =1 at x=y=0,
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Constant Value Contours for Normalized Field Component
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Figure 13f. Constant Value Contours for Normalized Field Component
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Figure l4a. Constant Value Contours for Normalized Field Component
Re(Ez/w) of the TMl 1 Mode when h/w = 2. The Fields are
Normalized so that !pz/cl\/lEx|2+|Ey|2 =1 at x=y=0,

Broken Lines are for Negative Values.
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‘ Figure 14b. Constant Value Contours for Normalized Field Component
Im(E /w) of the TMl 12Mode when h/w = 2, The Fields are
Normalized so that Ip /;l/IE | +[E [2 =1 at x=y=0,

Broken Lines are for Negative Values.
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Figure l4c. Constant Value Contours for Normalized Field Component |Ez/w]

of the TMl 1 Mode when h/w = 2, The Fields are Normalized
b4
so that IPZ/CIVIEX|2+ |Ey[2 =1 at x=y=0.
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Constant Value Contours for Normalized Field Component
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of the TMl 1 Mode when h/w = 2. The Fields are Normalized so
that |p2/;|/|Ex|2+ i12y|2 =1 at x=y=0,
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Figure l4e. Constant Value Contours for Normalized Field Component

2
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of the TM, | Mode when h/w = 2. The Fields are Normalized so
*
that |p2/;|/[Ex|§+ |Ey]2 =1 at x=y=0.
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Figure 1l4f. Constant Value Contours for Normalized Field Component
2 2 2 2 -1 2 2
P/l IE 17+ [E [ = [0%(se )T [/, [T+ [H |% of the Ty

Mode when h/w = 2, The Fields are Normalized so that
lpz/cl/lEx[2+[Ey[2 =1 at x=y=0.
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Figure 15a. Constant Value Contours for Normalized Field Component
Re(Ez/w) of the T™; , Mode when h/w = 2. The Flelds are
4
Normalized so that lpzlclv’[Ex[2+ [Eyl2 =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 15b. Constant Value Contours for Normalized Field Component !
Im(Ez/w) of the ™, , Mode when h/w = 2, The Fields are
’
Normalized so that |p2/c|/lEx|2-+]Ey|2 =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 15c. Constant Value Contours for Normalized Field Component |E,/w|
of the TM; , Mode when h/w = 2. The Fields are Normalized
b
so that lp2/;|/lExlz+lEylz =1at x=y=0.
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Figure 15d. Counstant Value Contours for Normalized Field Component

/Re’E, /)7 + (Re 0P8 /00)7 = /(Re 07, /52 )) 2+ (Re (78[5 1)
of the TM1 2 Mode when h/w = 2, The Fields are Normalized so
that lpZ/cT/IEx|§+ |Ey|2 =1at x=y=0,
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i Figure 15e. Constant Value Contours for Normalized Field Component
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of the T™M 2 Mode when h/w = 2, The Fields are Normalized so
that lpz/;MEx]2+ lzy|2 =1at x=y=0.
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Figure 15f. Constant Value Contours for Normalized Field Component
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2

2. 1 at x=y=0,
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Figure 16a. Constant Value Contours for Normalized Field Component

Re(Ez/w) of the TMO 1 Mode when h/w = 3. The Fields are
]
Normalized so that |p2/c|/|Ex|2+ |Ey]2 =1 at x=y=0. 1

Broken Lines are for Negative Values.
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{ Figure 16b. Constant Value Contours for Normalized Field Component 1
Im(Ez/w) of the TMO 1 Mode when h/w = 3., The Fields are ?
Normalized so that |p2/;|¢|Ex|2+ |Ey|2 =] at x=y=0. :

Broken Lines are for Negative Values.
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Figure 16c. Constant Value Contours for Normalized Field Component IEz/wl
{ of the TMO']_ Mode when h/w = 3. The Fields are Normalized so |
that lpzlcl/lEx]§+ |Eyl2 =1 at x=y=0. '
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Figure 16d.
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Constant Value Contours for Normalized Field Component

/(re(p%E_ /C))2+(Re(p2F. /c>>2=fne(p2a Ise )% + (Re(p?H fse 1)’
of the TM Mode when h/w = 3, The Fields are Normalized so

s 1
that |p /clu/ |E,| +|E |“=1at x=y=0.
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Figure l6e. Constant Value Contours for Normalized Field Component

2
N, /00 + (n(e7e, /07 = Atn™ /s )% + (o2 /s )’
of the TMO 1 Mode when h/w = 3. The Fields are Normalized so
L]
that lpz/;[VIExl2+|Ev|2 =1at x=y=0.
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Figure 16f.
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Constaat Value Contours for Normalized Field Component

2, | e 12 2 2 -1 /_2_—_2
lp*/el /e "+ B = 9% (se )t /lu 1%+ [H |" of the T, )

Mode when h/w = 3. The Fields are Normalized so that
Ipz/CIVIExl2+|Ey|2 =1 at x=y=0.

78




Figure 17a.
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Constant Value Contours for Normalized Field Component
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Normalized so that |p2/§|V|ExIZ'*'Ey
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Broken Lines are for Negative Values.

Mode when h/w = 3.
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Fields are
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Figure 17b.

X/wW
Constant Value Contours for Normalized Field Component
Im(E,/w) of the T™M, , Mode when h/w = 3. The Fields are
3
Normalized so that !pz/qlllExl2+ lEylz =1at x=y=0,

Breczen Lines are for Negative Values.
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Figure 17c. Constant Value Contours for Normalized Field Component [Ez/wl

of the TM, , Mode when h/w = 3., The Fields are Normalized

2
so that Ipz/C|'|Ex| + |Ey|2 =1 at x=y=0,
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Figure 17d.
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Constant Value Contours for Normalized Field Component

/(Re (p°E /;))2+<Re(p2E 1on? = /(Re(pzﬁ Ise )% + (Re(p%H /e ))?

of the TM Mode when h/w = 3, The Fields are Normalized so

ﬂmt\p/ﬂVElz+|E|2 1 at x=y=0,
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Figure 1l7e. Constant Value Contours for Normalized Field Component

/1nE,/2) % + (m%E /0)? = /in(p?H /sc )2+ (np?H, /se )

of the T™ Mode when h/w = 3. The Fields are Normalized so

that [pz/giilEx|2-+|Eyl2
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Figure 17f. Constant Value Contours for Normalized Field Component

lpz/zl'lEx|2+ lsy[z - |p2(se°)’ll/|Hxlz+ lHy[2 of the T ,

Mode when h/w = 3. The Fields are Normalized so that 1
2, /o 2 7 o a
p%/el /B, |+ |E 1% = 1 ac x=y =0,




Figure 18a.

x/w
Constant Value Contours for Normalized Field Component

Re(Ez/w) of the 'I'Ml 1 Mode when h/w = 3. The Fields are
9
Normalized so that |p2/z;|¢lExl2+ lEylz =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 18b,
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Constant Value Contours for Normalized Field Component

Im(Ez/w) of the TM; ; Mode when h/w = 3, The Fields are
?
Normalized so that ]pzlc)V!Exl +)Ey]2 =1 at x=y=0.

Broken Lines are for Negative Values.
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Figure 18c. Constant Value Contours for Normalized Field Component IEz/w[
of the 1 Mode when h/w = 3. The Fields are Normalized so

2 bl
that |p“/z| IEx] +|Eyl =1 at x=y=0.
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Figure 18d. Constant Value Contours for Normalized Field Component

Jire6%E /)% + (Re 07 10)? = /ime (67H, f5c )P + (Re oW, 56 )’ ;
of the TMl 1 Mode when h/w = 3. The Fields are Normalized so :

v‘fExl +|Ey| =1 at x=y=0.

that |p2/;|
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Figure 18e. Constant Value Contours for Normalized Field Component

2
: /(Ym(sz /2))" + (Im(l:’zEy/C))2 = v/(Im(pzﬂx/seo))z + (Im(pZHy/seo))2
{ of the 'ml Mode when h/w = 3. The Fields are Normalized so

that |p /;I/E l2+[E [“ =1 at x=y=0.
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Figure 18f.

Constant Value Contours for Normalized Field Component
2 e e 12 o 1e2cee L1/ ZaTn 12
lp“/z] lExl +|Eyl Ip (se) l !Hxl +[Hyl of the TMl’

Mode when h/w = 3. The Fields are Normalized so that

2 / 2 2 -
ip°/c| IEY! +|Ey[ =1 at x=y=0.
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Figure 19a.
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Constant Value Contours for Normalized Field Component

Re(Ez/w) of the ™

Mode when h/w = 3.
Normalized so that ,lp2/C|/|Exlz+ {Ey[z =1 at x=vy=0.

Broken Lines are for Negative Values.
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Figure 19b. Constant Value Contours for Normalized Field Component
Im(E /w) of the TM; » Mode when h/w = 3, The Fields are
b4
Normalized so that IpzlclllExlz+!Eylz =1 at x=y=0.

Broken Lines are for Negative Values,
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Figure 19c. Constant Value Contours for Normalized Field Component lEz/wl
F ! of the TM; , Mode when h/w = 3. The Fields are Normalized so
i that Ipzch/iExizﬂEylz =1 at x=y=0.
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Figure 19d. Constant Value Contours for Normalized Field Component

Jme 672, /02 + Re o7, /0) 7 = /(R (978, /o ))% + (Re(p7H, fse,))’
of the T, , Mode when h/w = 3. The Flelds are Normalized so
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that |p2/;[/|2x1‘+ |Ey|2 =1 at xsy=0,
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Figure 19e. Constant Value Contours for Normalized Field Component

/(Im(pzlix/c))2 + (Im(pZEy/t;))2 = v/(Itn(p?'l-ly/s¢-:°))2 + (Im(pzﬂx/seo))z
of the 'ml, 2 Mode when h/w = 3. The Fields are Normalized so
that |p2/c|¢|5x12+|sy|2 =1 at x=y=0.
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Figure 19f. Constant Value Contours for Normalized Field Component

2, S 12210 12 _ 1.2 -1 .
e /el lE, 1S+ 1B 1% = [pP(oey) |/lux|i+|ny|2 of the T, ,

Mode when h/w = 3, The Fields are Normalized so that
92/l 1 7+ 18,17 = 1 at x=y o
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SECTION V

CONTINUOUS SPECTRUM CONTRIBUTION

In this section, an asymptotic estimation of the continuous spectrum
contribution to the TM fields at a given w will be presented.

From equations 2 and 19, the continuous spectrum contribution to Ez
for a fixed w is given by

E:(x,y,z,jm) -ftlr;j- L r' 2—];; Ko(p|/(x-x')2+ (y-h)z)-Ko(pv/(x-x')2+ (y+h)2 )‘
_ -

x £¢(x' fw)e*Pdx"dg (22)
vhere p = - j 2+ mzlcz, B_ is the contour shown in figure 3, and £ - (£)
is calculated from equations 11 and 18. Along B_, it can be shown that
the p-values above and below the branch cut are related by p(above) =
oj"p(below). Thus, with the variable change from ¢ to - jw/c - x,
equation 22 becomes

E:(x,y,z,jm) = :‘—" eJuz/e r dx' [ de e "ZET% (x" fw)
-w 0 (23)

A1 (p/x-x2+ 5-m?) - 1 (o (x—x')2+(y+h)2)!

where Io is the modified Bessel function of the first kind and the parameter
p 1s given by p = - j/n2+2;|ucwlc.

The asymptotic behavior for large z of the continuous spectrum contri-
bution Bg(x.y,z,ju) can now be estimated. Due to the exponential term
exp(-xz), it is clear that the k-integral in equation 23 comes mainly
from the region where 1 > xz > 0. For field points in the working volume
of the simulator, the arguments of the Bessel functions are small for
1 > xz > 0, provided that z >> m(h2+w2)/c and z2 > (h2+u2). The small-
argument expansion can be applied to the Bessel functions to get (ref. 9)




T T e P

Io(p@-x')z + (y-h)2 )- Io(pv/(x-x')2 + (y+h)2 )

= (xz + iju/c)yh (24)

For the term £ S(£), ome obtains, under the same conditions, from equations

11 and 18

£7%(5) = —L [TZn(E)]T [Gnm + K:m B L:m]-l[s;e]

« —L [TZn(s)]T: [sm + 8.080n 'z'nl—z ( fn -1;%,— - Ko(2ph))] -1[5:]

o -1
.1 L) e
/‘“‘E ZO (l + 6on in 2 tn I‘w) sn Tzn(g) (25)
1-g° ™

where [TZn(E)]T is the transpose of the colummn vector [Tzn(a)] (i.e., a row

vector with Tzn(E) as the elements).

Combining equations 23, 24 and 25, one has

-juzle ¥ (1+s - zni‘l>-l

n=0

1 €")
[ ag' —~2—n——-r dg Sue Kz(x + Zjncm/c)‘
-1 A-¢

E (x,¥,2,}w) = l.mh e

T no fn 2 I'w

(26)

for z >> m(h +w )/c and z2 >> h2 + wz

Now, if one assumes that S;e has no singularities close to the bramch cut,

which is generally true, equation 26 immediately becomes

-1
£ (x,7,2,00) = 1 (1 + e "h> s te duz/e ;1-3- (1 vyl z) @7

e ot R TIORew  mrcop p  1P LE IV
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From equation 27, it is seen that the continuous spectrum contribution
to Ez(x.y,z,jw) decays as z-2 when the wave propagates along the +z direc-~
tion. The above asymptotic estimation can also be applied to other field
components to obtain similar results. Hence, within the region where
z2 >> yhww/c, (h2+w2), mz(hz-l-wz)z/cz, the continuous spectrum contribution
is negligible compared to the TEM mode contribution.
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APPENDIX

MATRIX-EQUATION FORMULATION FOR THE TE FIELDS

In this appendix, the matrix equation for the TE fields of the two
parallel-plates will be formulated. The procedure will be the same as

that used for the TM fields given in section III.

Under the source conditionm 6, the coupled differential-integral

equations 5 are simplified to the single equation

d2 2 v -0
— - f {G(x,h,x',h;p) - G(x,h,x',-h;p) } g (x')dx'

dx w

= 87%(x) for |x| <w (A1)

To solve equation Al, one first integrates the equation to yield the
following integral equation

w
f {G(x,h,x' yh3;p) - G(x,h,x"',-h;p) } g-o(x')dx’
-
= B “sinh(px) + r (Zp)_lsinh(p-lx-x'I)B-o(x')dx' for |x| <w (A2)
~w

where the integration constant B~ ° will be determined from the edge conditioms.

Equation A2 has the same form as equation 7. Hence, by following the
same procedure used to solve equation 7, one can transform equation A2 into
a Fredholm integral equation of the second kind given by

-0 1 ( ', ', ) =0/, '
g &) + K(E,E';y) -~ L(&,&";v) g (£')dg
-1

- 2!B-° 1 coshgxg'!:l-g'z dE‘ + 2 }1 V-o'(a'Ltlj'z dE'
g-& -§
wi-g2 -1 w-g? -1 ¢

for |g| <1 (A3)

101




where the variables are normalized according to equation 8, K(£,&':y)
and L(£,£';Y) are defined in equation 10, and

i

1
%) = wl [ 2v) Lsinn (v]g-£']) 87°(e")de"

The unknown quantities in equation A3 are g-o(E) and B™°. By
applying the edge conditions, one can derive a relationship between them.
The edge and symmetry conditions for g-o(g) suggest the following expansion

@) = 1-g2 ] %

mu=o

o1 5 (a4)

After using the expansion A4 in equation A3 it 1s observed that both
left-hand and right-hand sides of equation A3 contain the term &//1-§
which is the dominant term when £ + t1. By letting £ + +*1, one can equate
the left-hand and right-hand coefficients of the term £/V1-E" and thus
obtain

1 v
f f (Mg -grsm) - N e -gtm) -6 [T (g")ag"dae’

1- &" 2m+1
-1 -1

1 1
= v ° I cosh(yE") "%T dg' + I V-o'(E') i+§' dg’
-1 -1

Or, after simplification

-0
mZO am - vedge (45)
where
1
ag = 2(my1,(n) [_1 (@03 - 8" @2niv)) RO (M)an

-fnf (1=t -m?uy 0 -w

dn'

R:(n) - ;
=1+{n| /(1- (n‘+n)2)(l- (n'-n)z)

|
i
i
3
4.
;



- r—— ety o

1

Vegge = (ML) f vlEna-e'H™ e

-1

Having determined B ° in terms of g;é, the matrix equation for g;o
can then be derived. By removing the term £//l1-E£" from both sides of
equation A3, it is easy to see that the equation cam be cast into the

following form

1
g0 + /1-g2 J {PCe,8";v) - QCE,E'3v) }g 0 (EM)dE!
-1

= J&-—sz (B'°u°(g) + v'°(g)) (46)

where

1 2
o 22 cosh(y&')vl-¢ ) S
() = 2 }1 - (72 - 5 ) o

1 '
- 2y cosh(yg') dE"

'll)} []
-1 (g-g)h-¢ 2

{p(£,&"5v) - Q(&,8";57)}

g ;l M'(E"-E';Y) - N(g"_sl;y) dg"
m

-1 (c-gm-¢"2

2 fl V‘O'(g') dgl

vOo) ==
-1 (g-gnA-g'2

T
By inserting the expansion A4 into equation A6 and using the orthog-
onality of the Chebyshev polynomials, one finally obtains the desired

algebraic equations for g;o given by

-0 o 0 00\ -o -0 L0 -0
g8, * E (an - Qnm - Hnam )gm - vedgeHn + Vn (A7)
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Or, in matrix form,

1
I (M'(Zn;Y) - N'(Zn;Y))F;m(n)dn
0

1 1/—'_ 52

Q
Uy g CEVE (E)dE

/2
J cosh(y cos ¢)cos(2(n+l)¢)d¢
0

1
/. 2 -0

)
[

-0’ ' '2,-% '

o o ) -0 -0 0 =0 !
[%m * P " QT Hnam] [gm ] - [- vedgeﬂn *Va ] (48)
E where
x, o 2 / 4 |
Pam ?f_ L U A= E'2 Uy (6 X
E'i {2(g,8'v) - Q&8s }dgtas

S (ny = Jl-lnl (l- (n'—n)z)UZm,,_l(n'-n)T2n+2(n'+n)

dn'

)

-1+(n| /<l—(n'-n)2)(l—(n’+n)2)

o+l m
- kzo zgo ot nk} I (bye2, 2041) - bj(2k 2043) ) x
x 2RI T () - by g (2 20430D,




o _ m- % (m+2+1)! 2241
upe = (1) TR

0 _ (_qyn~k+1l (a+k)!(n+1)
tae = D ks DR

-0

and bj(k,l), Dj(n) are given in equations 16 and 17; vedge

in equation A5 with

o
and a are given

m L
o - o _ 2 22 -2j+1
R = § w4 ) (bj(o, 2041) - b, (0, 2043) )n D, (n)

=0 J:O

-n b2+l(0’ 22+3)D2+1(n)
The solution of equation A8 is simply given by
-0 o o o o]-l -0 -0 0
[gm ]= [snm + Pmn - Qnm - Hnam [ Vn - vedgeHn] (a9)

This solution can be used in equations A4, 4 and 2 to calculate the TE .fields

of the two-parallel-plate simulator.
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